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The cell is like our financial 
system: Even if you have a diagram of all
the complex interactions going on, you
still cannot intuit how the whole system
will react when perturbed. Indeed, 
the cell’s unpredictable responses to 
manipulation sometimes resemble 
the unanticipated magnitude of system
failure seen in the 2008 financial crisis,
says Gary An, MD, associate professor 
of surgery at Northwestern University
Feinberg School of Medicine.  >
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With hundreds of trillions of atoms,
thousands of proteins, and a host of
tiny organs, motors, and highways that
often interact in non-linear ways, the
cell is a rich target for computational
modeling. But modelers and cell biolo-
gists haven’t traditionally worked
together. “In the past I think a lot of
really interesting mathematical model-
ing was going on, but I’m not sure how
closely tied it was to the biologists’ con-
sciousness,” says Steven Altschuler,
PhD, associate professor of pharmacol-
ogy at Southwestern Medical School.  

This is slowly changing. “Now is a
time when both sides are realizing it’s
a good thing to get together. And I
think a lot of progress is happening,”
Altschuler says. 

Greater integration stands to benefit
both cell biology and biomedical mod-
eling alike.

Cell biologists need modeling to
understand how genes, proteins, and
pathways work together to make the
cell go. “To me, it’s no longer possible
to even imagine thinking about these
problems properly without using mod-
els as a crutch,” says Ed Munro, PhD,
assistant professor of molecular genetics
and cell biology at the University of
Washington. “There are simply too
many moving parts and too many inter-
actions for your brain to synthesize.” 

Even with relatively simple models,
Munro says his intuition about what
will come out of a simulation is wrong
much of the time. “I’m often complete-
ly surprised,” he says. “That tells me
that if we’re limited to assembling ver-
bal explanations for the things we
study, then we’re in trouble.”

At the same time, modelers need cell
biologists. Traditionally, modelers have
focused on either the molecular level
(genes and proteins) or the macro level
(tissues and organisms). But some are
arguing that when it comes to multi-
scale modeling, it makes the most sense
to start in the middle—at the cell level.
After all, molecular interactions coa-
lesce at the level of the cell, and tissues
are just a bunch of cells acting together.

“When we’re thinking about multi-
scale systems in biology, many people
either start at the very smallish level or
they start at the tissue level; I think
very few people have thought of the
cell as the main point. But the cell is
the basic unit of life,” says Jenny
Southgate, PhD, professor of molecular
carcinogenesis at the University of

York in the United Kingdom. 
What follows are examples of how

cell-centered models are adding funda-
mental insights into our understanding
of cell behaviors—including how cells
divide, eat, sense, move, cooperate,
travel, and battle injury—as well as
helping modelers bridge from the
molecular to the tissue and organism
levels. These models range in scale
from single-cell to multi-cell, but all
have implications for the basic life sci-
ences as well as for diseases, such as
cancer, heart disease, and sepsis. 

BEYOND BIOCHEMISTRY
Modelers have traditionally treated

the cell as a bag of chemicals, focusing
on signaling networks, such as positive
and negative feedback loops. These
models have led to important insights.
But the biochemistry isn’t happening
in a vacuum; reactions unfold within,
and are influenced by, the cell’s hetero-
geneous physical environment. To truly
understand cell behavior, you have to
account for the physics and geometry. 

“People normally think about bio-
chemical networks and pathways. That’s
what systems biology is about. But, in
addition to that, there’s polymer physics,
membrane transport, electrophysiology,
electrical events, cell mechanics, and
the forces in adhesion,” says Leslie M.
Loew, PhD, professor of cell biology and
of computer science and engineering at
the University of Connecticut Health
Center, and one of the creators of
Virtual Cell, a well-known cell model-
ing program (www.vcell.org).

“When people say that they want to
model the cell, they’re mostly talking
about what’s happening in time; very few
modelers try to think about what’s hap-
pening in space. And not only space, but
also mechanical processes, like forces
and movements,” says Alex Mogilner,
PhD, professor of neurobiology, physiol-
ogy and behavior and of mathematics at
the University of California, Davis.

But incorporating space and
mechanics is challenging, Mogilner says.
Several software programs can model
simple diffusion in a relatively nice
geometry, but that doesn’t capture the
reality of the cell. “The inside of the cell
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conceptual models that describe the
cell in caricature, Mogilner says.
Though it may seem that more detail
would always be better, in fact there is
a tradeoff between complexity and
insight. All-inclusive models have a

direct correspondence with experiment
and tend to be more accessible to biol-
ogists and physicians, but they may add
little to overall understanding.

“You can take biology, which is a big
black box, and turn it into an accurate

is cluttered with all sorts of debris—
cytoskeleton, organelles, and other stuff.
In addition to diffusion, there’s also
directed transport by molecular motors.
Plus, diffusion may happen in the bulk
of the cytoplasm or in the plane of the
membrane. It’s very difficult,” Mogilner
says. Virtual Cell has developed the abil-
ity to model diffusion along a membrane
and in complex geometries. These capa-
bilities are state of the art.

Spatial modelers make other simpli-
fications as well, such as modeling in
two dimensions or treating cells as per-
fect circles. But some are trying to
bridge to 3-D or account for versatile
and changing cell shapes. Virtual Cell
allows continuum models in 3-D; and
another cell modeling program, MCell
(www.mcell.psc.edu), can do discrete
stochastic simulations in 3-D.

As modelers account for more and
more of the cell’s physical realities, it
seems that, by necessity, models will get
more complex and detailed. This isn’t
always the case, however. Models can
range from all-inclusive models that
attempt to perfectly mimic the cell to
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Modeling in Space. Programs like Virtual Cell allow researchers to
model the spatial realities of the cell, such as diffusion on a mem-
brane. This Virtual Cell simulation shows lipid signaling and diffusion
on a protrusion of membrane on a neural cell (called a “spiny den-

drite”). Courtesy of Sherry-Ann Brown, University of Connecticut
Health Center; published in: Brown, S., F. Morgan, J. Watras, and L. M.
Loew. 2008. Analysis of phosphatidylinositol-4,5-bisphosphate sig-
naling in cerebellar Purkinje spines. Biophysical Journal 95:1795-1812.

“When people say that they want to
model the cell, they’re mostly talking
about what’s happening in time; very

few modelers try to think about
what’s happening in space. 

And not only space, but also
mechanical processes, like forces and

movements,” says Alex Mogilner.
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use some kind of error-correction
mechanism. 

They simulated a number of plausi-
ble mechanisms but “so far, what we are
finding is almost nothing can explain

totally fast and accurate assembly,”
Mogilner says. Their model provides
constraints for researchers exploring
alternative error-correction mecha-
nisms, he says. 

Once microtubules have accurately
captured the chromosomes, they line
them up evenly at the equator of the
nucleus. What’s unclear is how the
microtubules, which start at highly var-
ied lengths, manage to even themselves
out. “The question is: how do you har-
ness the wildness of the microtubules,
which would otherwise be inclined to
grow and shorten very randomly and
willy-nilly?” says David Odde, PhD,
professor of biomedical engineering at
the University of Minnesota.

In a 2008 paper in Cell, Odde and
his colleagues used a Monte Carlo sim-
ulation to predict that an unidentified
molecular motor must regulate micro-
tubule length. Simulations showed
that deleting this protein would cause

microtubules to grow too long
and uneven, and overexpress-
ing it would cause micro-
tubules to grow too short and
to cluster near the poles of the
nucleus. His graduate student,
Melissa Gardner, then identi-
fied the protein experimental-
ly: kinesin-5, a motor protein
not previously recognized as a
player in microtubule assembly. 

The model shows that
kinesin’s mode of action is
really simple, Odde says. The
longer a microtubule becomes,
the more places kinesin—
which promotes disassem-
bly—can attach to. “It evens
the game out. It just keeps
penalizing the ones that keep
getting out ahead of the oth-
ers,” Odde says. 

The finding has implica-

simulation, which in itself has become
a big black box,” Altschuler says. In
contrast, he says, conceptual models
“give you a glimpse into something
really fundamental.”

HOW A CELL DIVIDES: 
HARNESSING THE WILDNESS

OF MICROTUBULES
When a cell divides, it assembles an

intricate piece of machinery called a
“mitotic spindle” that physically sepa-
rates the chromosomes. Chromosomes
are pulled apart by filamentous rods,
called microtubules, anchored on
either side of the nucleus, at the cen-
trosomes. One of the fundamental
questions of mitosis is how this spindle
assembles. Mathematical modeling has
been instrumental in answering this
question because it is difficult to exper-
imentally follow and perturb individual
microtubules, Mogilner says. 

Microtubules are dynamic polymers
that can rapidly shed or add proteins to
their unanchored end. It’s known that
microtubules find the chromosomes
through a “search-and-capture”
process: they randomly grow and shrink
from the centrosomes until, by
chance, they encounter a chro-
mosome and hook it. 

In an influential paper four
years ago, Mogilner and his
colleagues showed that the
process cannot be completely

random. They built a comprehensive
model of spindle assembly, including
hundreds of microtubules (represented
as rods that grow and shrink in differ-
ent directions) and tens of chromo-

somes (represented as randomly orient-
ed cylinders dispersed throughout a
spherical nucleus). Their simulations
showed that a purely random search-
and-capture would not be fast enough
to assemble the spindle in the 15 to 20
minutes it takes the cell. Instead, a
“biased” search-and-capture was
required—molecular motors direct
microtubules to grow in areas where
they are more likely to bump into chro-
mosomes. 

In a follow-up paper in PNAS in
2009, Mogilner’s team ran simulations
that probed not only the speed of
biased search-and-capture, but also its
accuracy. The result: there were errors
in a whopping 70 percent of micro-
tubule-chromosome attachments (for
example, when a chromosome is cap-
tured by only one microtubule or by
two microtubules from the same pole).
In real life, cell division is highly accu-
rate. So this revealed that the cell must

Search and Capture. Visualization
of a computer simulation of
microtubules (growing in blue,
shortening in red, captured in
green) searching for chromo-
somes during mitotic spindle
assembly. Courtesy of: Raja Paul
and Alex Mogilner, University of
California, Davis. Reprinted from
Paul, R., et al., Computer simula-
tions predict that chromosome
movements and rotations acceler-
ate mitotic spindle assembly with-
out compromising accuracy, PNAS
106(37) 15708-15713 (2009). 

Conceptual models “give you a glimpse into something 
really fundamental,” Steven Altschuler says.
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tions in cancer, as it means that anti-
kinesin drugs—which are already in
clinical trials—could help control
tumor growth by disrupting a critical
step in mitosis. 

HOW A CELL EATS:
PROTRUDING HANDS

AND FINGERS
Single-cell organisms obtain nutri-

ents via a process called cell eating, or
phagocytosis. Using its cytoskeleton—
dynamic filaments including actin and
microtubules—the cell wraps itself
around a particle until it’s fully
engulfed. Cells of the immune system
use the same process to destroy bacte-
ria and yeast and to clean up debris.
“Without the phagocytosis of yeast,
you would be fermented within a day
or so,” says Micah Dembo, PhD, pro-
fessor of biomedical engineering at
Boston University.

“Though the components of cell
eating have been well worked out,
mechanistic explanations are lacking,”
Dembo says. “We want to know: what
are the forces that the cell is producing?
How is the cell pushing? How hard is it
pushing? Where is it pushing? Is it
pulling? How does it orchestrate its lit-
tle hands and fingers to do something
like phagocytosis?” 

Dembo has built a model of phago-
cytosis for neutrophils (a type of white
blood cell) in collaboration with
Volkmar Heinrich, PhD, an associate
professor of biomedical engineering at
the University of California, Davis,
and Marc Herant, PhD, a research
assistant professor of biomedical engi-
neering at Boston University. Rather
than model the cytoskeleton compo-
nents as individual proteins or rods,
“we believe at its basis, the cytoskele-
ton is just kind of a gooey glop,”
Dembo says. “It’s got intermediate fila-
ments in there; it’s got actin in there;
it’s got microtubules in there; it’s got
water; it’s got endoplasmic reticulum;
it’s got big chunks like granules and
lysosomes; and the nucleus is a big rock
in there. We think of it as a sludge,
which, to a good approximation, can
be regarded as a creeping fluid.” They
use a system of partial differential
equations to keep track of the forces
exerted by and on this viscous fluid as
it moves within the cell. 

In a paper in the Journal of Cell
Science in 2006, Dembo’s team reported
that neutrophils use two key interfacial

forces to eat a bead: a protrusive force
and an intrusive force. The cytoskele-
ton and the cell membrane repulse
each other (the protrusive force), caus-
ing a gap to open between them; as
cytoskeleton polymerizes in the gap,
this causes fingers of cytoplasm to jet

out around the bead. At the same time
the cytoskeleton and cell membrane
attract each other (the intrusive force),
causing cytoskeleton to build up near
the membrane; as this excess cytoskele-
ton depolymerizes, this sucks the bead
into the cell. 

Virtual Cell Eating. A. Experimental
images and corresponding computer
simulation of a neutrophil engulfing a
bead. B. A close-up of the simulation:
the arrows show the flow of the
“sludgy” cytoskeleton from the point of
view of the bead (top) and of the cell
(bottom). Adapted with permission from:
Marc Herant, Volkmar Heinrich and Micah
Dembo. Mechanics of neutrophil phagocy-
tosis: experiments and quantitative mod-
els. Journal of Cell Science 119: 1903-1913
(Figures 3 and 5, http://jcs.biologists.org/
cgi/content/abstract/118/9/1789).
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something like phagocytosis?” 

Micah Dembo says.
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Surprisingly, when the same neu-
trophil eats a yeast particle, it loses its
ability to generate the intrusive force.
“It has to slowly wrap its fingers around
the yeast without any sucking in

motion,” Dembo says. “So the cell is
trying to make a big enough hand, and
it will eventually manage to do that.
But in the meantime the yeast is getting
pushed away [by the protrusive force] as

the cell is trying to grab it.” The
researchers don’t really know why this
happens, but perhaps the yeast particle
has a defense mechanism that blocks
the intrusive force.

“I love this kind of thing because
until you model it and think about it,
you never realize how clever the cell is
and all the problems that the poor cell
is facing to do these things,” Dembo

says. “Without the modeling, you
would just be looking at pictures of
cells eating things.” 

HOW A CELL SENSES:
FEELING THE ENVIRONMENT

The cell’s environment plays a criti-
cal role in directing cell behavior. In a
landmark 2006 paper in Cell,
researchers showed that the mechani-
cal properties of the environment
alone—just its elasticity, nothing bio-
chemical—can influence cell fate: for
example, a stem cell grown on a very
stiff substrate becomes a bone cell
whereas the same stem cell grown on a
soft tissue becomes a brain cell. Follow-
up experiments showed that substrate
stiffness also directly affects cell shape,
motility, growth, and malignancy. “The
fundamental question is: how do they
sense the stiffness?” Odde says. 

Cells bind to and interact with their
environments (typically, the extracellu-
lar matrix) through proteins called
integrin receptors. These receptors clus-
ter in the cell membrane to form “adhe-
sion complexes” that link the cell’s
actin cytoskeleton to the matrix and
play a key role in cell movement and
cell-to-matrix communication.

In a December 2009 paper in PLoS
Computational Biology, Daniel A.
Hammer, PhD, professor of bioengi-
neering and of chemical engineering,
and his colleagues, revealed a “simple
calculation that shows why substrate
elasticity affects the biology so strong-
ly.” They modeled the cell membrane
and the substrate as lattices of springs
and the integrins as individual springs
that can diffuse along the cell mem-
brane, cluster with each other, bind to
the substrate, and pull on the mem-
brane and substrate. 

In simulations, they found that as
you make the substrate stiffer and
stiffer, it drives receptor clustering. “If
the receptors remain distributed, then
they have to pull up the substrate at
many locations, and that’s energetically
very unfavorable on stiff surfaces,”
Hammer says. “What they’d rather do is
get together in a cluster and then pull
up the surface just in small regions.”

The extent of clustering is directly
correlated with cell activation. “I think
the effect of substrate mechanics on cell
biology is nothing more than this phys-
ical chemistry of driving clustering in
these receptor patches,” Hammer says. 

The work has important implica-

“Until you model it and think about it,
you never realize how clever the cell is 

and all the problems that the poor cell is 
facing to do these things,” Dembo says.

Surrounded! This shows a 3D simulation of a neutrophil engulfing a bead and the corresponding
experimental images. Courtesy of: Marc Herant, Boston University; Volkmar Heinrich, University
of California, Davis; and Micah Dembo, Boston University.
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tions for cancer, because tumors are
stiffer than normal tissues; and this
stiffness promotes malignancy and
growth. For example, breast tumors get
stiffer and stiffer as they progress. “It
used to be thought that this was an
effect of breast cancer, but now people
are starting to think that it might be
one of the causative determinants of
breast cancer,” Hammer says. 

In a 2008 paper in Science, Odde and
his colleagues similarly used modeling
to explore how the cell senses stiffness
as it moves across a substrate. They
modeled actin filaments as individual
rods, and integrins and substrate mole-
cules as individual springs. They found
that more springy substrates can stretch
and move with actin as the cell
moves, so the clusters of inte-
grin—which act like motor
clutches—remain engaged
longer. But less springy sub-
strates have little give, and
thus the clutches slip and dis-
engage more frequently. 

“So, cells, through that
motor clutch system, actually
have the innate ability to sense
stiffness. How they actually
read it out for these decisions
that they make is now the next
problem. And we’re moving on
to that and trying to apply it to
brain cancer cells and how
they migrate,” Odde says. 

HOW A CELL MOVES:
CRAWLING ON SUBSTRATES

Cells move by crawling along sub-
strates, propelled by actin filaments—
which add proteins to one end and shed
them from the other (called “tread-
milling”). Actin polymerizes at the lead-
ing edge of the cell, pushing forward a
protrusion of cytoplasm, which grabs
hold of the substrate via clusters of inte-
grins. Then the back of the cell detaches
from the substrate and is pulled forward
by the contraction of the actin cytoskele-
ton. Though the general principles are
well understood, specific details are lack-
ing; for example, it’s unclear what deter-
mines a moving cell’s shape and speed. 

Mogilner’s team devised a simple

model to explain movement in fish kera-
tocytes, fan-like cells that are among the
fastest moving animal cells. “It turned out
that a very simple mechanistic model,
with very few equations, describes every-
thing,” Mogilner says. As actin polymer-
izes at the leading edge, it pushes on the
cell membrane, causing tension all along
the membrane (which does not stretch).
This force, in turn, pushes back on the
growing actin filaments. Actin density is
highest in the middle of the leading edge,
so the force per filament is lowest here,
and actin grows rapidly. Actin density is
lowest at the sides, so the force per fila-
ment is high here, which restricts poly-
merization. The work was published in
Nature in 2008.

The model predicted that the high-
er the ratio of actin in the center to
actin in the sides, the more canoe-
shaped the cell would be and the faster
the cell would move. These predictions
were borne out by experiment.

“The equations are very enlighten-
ing because they connect the biochem-
istry (the kinetics of actin cytoskele-
ton) with the geometry (the shape) and
with the physics (the forces and move-
ments),” Mogilner says. “So I think this
is a very cool thing.”

Like Mogilner’s model, most models
of cell movement are two dimensional.
This is a problem, because 3-D is not
simply an extension of 2-D, says
Muhammad Zaman, PhD, assistant pro-
fessor of biomedical engineering at
Boston University. In 2-D models, the
cell interacts with the substrate only on
one side. But when a cell moves in the
body, it interacts with the extracellular
matrix on all sides. “In reality a cell does
not have a top or a bottom or a ventral
or a dorsal surface; reactions happen all

Sensing Stiffness. LEFT: This computer simulation provides one possible explanation for how
cells sense the mechanical stiffness of their environment. As myosin motors pull on actin
bundles, molecular clutches (modeled as springs) engage and disengage with the substrate
(also modeled as a spring). Stiff substrates have little give, and thus the clutches frequently
slip and disengage; soft substrates can stretch and move with actin, so the clutches remain
engaged longer. RIGHT: The motor-clutch model was tested against a series of experiments;
for example, cell traction can be measured by labeling neurons (green) and soft substrates
with fluorescent beads (red). Chan CE and Odde DJ, Traction Dynamics of Filopodia on
Compliant Substrates, Science; 322: 1687-1691 (2008). Reprinted with permission from AAAS.

Cells on the Go. Computer simulations of motile fish keratocyte cells. The color represents actin density
(red/hot=high; blue/cold=low) and the arrows represent the flow field. The cell on the left is more canoe-
shaped and moves faster due to the pattern of actin flow, whereas the cell on the right is rounder and
moves slower. Courtesy of Raja Paul and Alex Mogilner, University of California, Davis.
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prediction appeared in PNAS in 2006. 
Their work may have practical

implications for cancer. For example,
there is a relationship between the col-
lagen density in a woman’s breasts and
her chance of developing invasive
breast cancer. It may be that, at opti-
mal collagen densities, rapid cell
movement increases the potential for
invasion and metastasis. 

BRIDGING TO TISSUES
AND ORGANISMS

The aforementioned models
focus on the behaviors of single
cells. But cells rarely act alone.
To truly understand cell biology
and to bridge to tissue and
organism biology, multi-cell
models are needed. 

Though several approach-
es for multi-cell modeling are
available, agent-based mod-
eling is gaining momentum.

Unlike traditional continuum
models, which treat groups of cells

as homogenous masses, agent-based
models treat cells as individual
autonomous entities. Besides capturing
the heterogeneity of cells and their inter-
actions, agent-based models facilitate
collaboration between biologists and
modelers. 

“The cell really is an autonomous
unit. It lends itself very well to agent-
based modeling, where you have the
one-to-one relationships between the
computational model and the actual
cell,” says Southgate, a biologist who
works closely with modelers. “For cell
biologists, that’s important, because you

over the surface,” Zaman says. Thus the
relevance of 2-D models for biological
processes in vivo “is very limited if not
completely inaccurate,” he says. “More
often than not, we find that the 2-D par-
adigms break down completely.”

Unfortunately, most experiments are
conducted in 2-D—on glass
or plastic plates—which
creates a severe bot-
tleneck for would-
be 3-D modelers.

“Modeling and experiments go hand in
hand. It’s very hard to publish or think
about 3-D if you don’t have any real
data to compare it to,” Zaman says. To
counter this problem, Zaman’s team
measures cells moving through 3-D gels
derived from in vivo sources.

Using these data, they built the first
3-D model of cell migration, a compre-
hensive, multi-scale model. At the low-
est level, they zoom in on individual
snippets of proteins in the cell and
matrix, solving Newton’s force equa-
tions for these snippets. “So you’re look-
ing for the right conformations that will
bind, that will attach, that will stretch,
things like that,” Zaman says. Then
they zoom out, feeding relevant infor-
mation from the lower level into higher
level models that solve similar force
equations for proteins, protein com-
plexes, or whole cells (with continuum
rather than stochastic equations). Grid
computing provides the computational

power to run such large simulations.
In a 2005 paper in Biophysical

Journal, Zaman’s team explored how
altering the 3-D environment affects
cell velocity. Others had predicted that
if you increase ligand density in the
matrix—that is, give integrins more
points where they can attach—this will
give the cell a better grip and allow

swifter motion. But, surprisingly,
they showed that there is an

optimal ligand density,

after which speed decreases. At this
point, the back of the cell experiences
difficulty detaching, creating drag.
“That was counterintuitive, but we
showed that experimentally indeed it
was the case. And the match was not
only qualitatively accurate, but also
quantitatively accurate,” Zaman says.
The validation of their computational

“The cell really is an autonomous unit.
It lends itself very well to agent-based

modeling, where you have the 
one-to-one relationships between 

the computational model and 
the actual cell,” says Southgate.

3D Obstacle Course. 
Computer rendition of a 3D extracellular matrix.
The red fibers are collagen fibers that surround the cell; the cell must navigate through
these during migration and invasion. Courtesy of Muhammad Zaman, Boston University. 

MODELING 
MANY CELLS: 
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can immediately see the relationship
between the modeling and the cell.”

Rod Smallwood, PhD, professor of
computational systems biology at the
University of Sheffield in the United
Kingdom, agrees. “Because you can talk
about a computational object as if it was
a physical object, this seems to make
the discussions with cell biologists a lot
easier. It seems much more intuitive to
be able to talk about cells as if you have
physical objects interacting with each
other rather than to talk about sets of
differential equations,” he says. 

Agent-based cell models also fill an
important and largely untapped niche
in multi-scale modeling: the middle-
out model. The models can easily
embed molecular-level modules, such
as signaling networks—allowing them
to scale down; at the same time, the
collective behavior of cells falls right
out of the simulations—allowing the
models to scale up. 

HOW CELLS COOPERATE:
GROWING INTO TISSUES
Cell cooperation plays a key role in

promoting tissue growth during devel-
opment and inhibiting it later in life.
Cells bind to and interact with each
other through surface receptors called
cadherins. Mutations in the cadherins

have been linked to cancer.
Southgate’s team studies cell-

to-cell interactions in human
bladder epithelial tissue aided by
agent-based modeling. In their
model, rules govern whether
each cell bonds to other cells,
grows, divides, migrates in two
dimensions, or dies. For exam-
ple, each cell’s probability of
binding to its neighbor is pro-
portional to the local calcium
concentration. The local signal-
ing milieu is determined by a
series of mathematical models
linked to the agent-based model.
“We often adopt other people’s
pathway models, deriving rules
that we then incorporate into
the agent-based models,”
Southgate explains. 

In a 2010 paper in the
Journal of Theoretical Biology,
Southgate’s team introduced
anti-social cells—cells lacking
functional cadherin—into their
models to see how they would
influence normal cells and
affect population behavior. In
some situations, just a few anti-
social cells could influence the
growth of the entire popula-
tion. The model illustrates one
way that cancerous cells can
disrupt the growth behavior of
normal tissue. 

Cell cooperation is also
important in wound healing.
To heal a wound, cells migrate
into the rift and multiply to fill
the gap. The process is gov-
erned by both cell-to-cell and
environment-to-cell signaling. 

Smallwood and his col-
leagues are working out the
details using 3-D, multi-scale,
agent-based models. The
agents are cells that can bond, migrate,
divide, or differentiate. External mod-
ules determine cell signaling and
resolve the forces between cells. “So
there are models of particular cell sig-
naling pathways that others have creat-
ed that you can download. The func-
tions that control cell transitions can
be culled from these external models,”

Smallwood says. “Things move in time
steps and at the end of each time step,
the forces are resolved and the position
and size of the cell is updated.” To make
the calculation computationally
tractable, they model the behavior of
10,000 cells—just a fraction of the mil-
lion cells involved in wound healing,
but enough to capture the fundamental

Anti-Social Cells. These bladder epithelial cells are labeled with a fluorescent antibody to
E-cadherin (green), with nuclei stained blue. The top panel shows the normal pattern of E-
cadherin concentrated to junctions between cells, whereas cells in the bottom panel have
been genetically modified to disrupt E-cadherin and create anti-social cells.  Courtesy of
Jenny Southgate, University of York.

Incomplete Repair. An agent-based simulation that
shows why wounds greater than 2 centimeters
across cannot heal spontaneously. Different colors
represent different cell types: blue cells are ker-
atinocyte stem cells; they change to light green as
they migrate and proliferate and then to dark green
as they differentiate. When the wound (red) is too
big, the cells differentiate and stop moving before
they can fill the gap. From: Tao Sun, Salem Adra, Rod
Smallwood, Mike Holcombe, Sheila MacNeil.
Exploring hypotheses of the actions of TGF-β1 in
epidermal wound healing using a 3D computational
multiscale model of the human epidermis. PLoS ONE
4(12): e8515. doi:10.1371/journal.pone.0008515.
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putational models. You can actually
follow an individual monocyte and say
‘hey, where did you come from?’” 

HOW CELLS
BATTLE INJURY: 

TESTING DRUGS IN SILICO
A major insult to the body, such as

an overwhelming infection or injury,
can cause a condition called sepsis:
The immune system goes into over-
drive, leading to collateral damage of
otherwise normal tissue, subsequent
organ failure, and death. In the 1990s,
researchers reasoned that since certain
cytokines incite immune cells, admin-
istering anti-cytokine drugs would
cure sepsis. But they were wrong. “It
turns out that none of the drugs
worked, and some of them actually
hurt people,” says Gary An, who is a
trauma surgeon and ICU doctor at
Northwestern University Feinberg
School of Medicine.

Frustrated by these failures and the
lack of effective treatments for his sep-

biology, Smallwood says.
In a paper in press with PLoS

Computational Biology, Smallwood’s
team used simulations to explain, for
the first time, why wounds wider than
two centimeters cannot heal sponta-
neously. The reason: cell-to-cell sig-
naling drives the cells to first start
migrating and then to differentiate;
once they differentiate, they can no
longer move. If the distance the cells
have to migrate is too great, they dif-
ferentiate before they have filled the
gap. “If you can’t move on any more,
you’re not going to heal. So that’s quite
interesting. You can actually see the
critical reason why the wound doesn’t
heal,” Smallwood says. 

This suggests that it might be possi-
ble to get large wounds to heal if you
could override the cells’ differentiation
rules, he says. 

HOW CELLS TRAVEL:
TRAFFICKING IN

THE BLOODSTREAM
When the body is injured or invad-

ed, immune cells travel through the
bloodstream to the site of injury. They
exit the bloodstream through a precise
set of steps: first, they roll along blood
vessel cells, then they halt to a stop,
and, finally, they slide through the
blood vessel wall. The process is
orchestrated through adhesion mole-
cules on both the vessel cells and
immune cells (selectins and inte-
grins), as well as signaling molecules
called cytokines. A fundamental ques-
tion is how cells decide where to stop
in circulation. 

Shayn Peirce-Cottler, PhD, assistant
professor of biomedical engineering at
the University of Virginia, studies
immune cell trafficking with agent-based
computational models. Cells drift,
adhere, roll, stop, or enter tissues based
on concentrations of simulated
cytokines and adhesion receptors. The
cells are embedded within a simulated
microvascular network—complete with
pressure, flow velocities, and wall shear
stresses—that shuttles cells around the
body. It’s a complex system. The
researchers have to keep track of the
cells in time and space, monitoring the
state of hundreds of chemokines and cell
surface receptors as well as the cells’
behaviors, Pierce-Cottler says. The mod-
els are two dimensional, since moving to
3-D would make them computationally
intractable at this point, she says.

Peirce-Cottler’s team is exploring
the build up of plaques in the arteries
(arteriosclerosis). Because inflamma-
tion is a major contributor to arte-
riosclerosis, it turns out that the traf-
ficking of immune cells (particularly
monocytes) to plaques plays a critical
role in their initiation, progression,
and eventual rupture. Peirce-Cottler
and others believe that microvessels—
the small blood vessels that feed into
large vessels—may be an important
conduit of monocytes to plaques. They
are using simulations to tease out the
relative contribution of monocytes
from the microcirculation versus the
macrocirculation. 

“That’s hard to quantify experimen-
tally, because you need to have a system
where you’re tracking individual cells
in vivo and watching to see, when a
monocyte shows up in a plaque, where
does it come from. And technically
speaking, we just don’t have the tools
to be able to do that,” Peirce-Cottler
says. “That’s the great thing about com-

Traffic in the Bloodstream. Agent-based models in conjunction with in vivo experimental
models are used to study the recruitment of circulating cells in the microvasculature of
ischemic muscle. The left panel shows a confocal micrograph image of the macrovessels (yel-
low) and microvessels (blue and red) in mouse muscle; immune cells (monocytes) are stained
in green. The right side is a screenshot from an agent-based model of this same system.
Courtesy of Shayn Peirce-Cottler, University of Virginia.
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sis patients, An turned to computation-
al modeling “as a means of addressing
the bottleneck in translational
research.” It was clear that sepsis exhib-
ited complex behaviors that could not
be predicted through reductionism and
linear thinking alone, he says.
However, his path to computational

research had a significant hurdle. 
“I was not a computer science or a

math guy at all; I hadn’t taken anything
in those areas since high school. So the
computational bar was kind of high,”
he says. Fortunately, he discovered an
agent-based modeling toolkit called
StarLogo that was designed for teach-
ing kids, and thus was very intuitive. 

“The results of a cell biology paper
are: I take this cell; I stimulate it with
this particular compound that performs
this particular function; I then see how

the cell responds. Those sorts of behav-
iors can be converted to rules and com-
puter code for agent-based modeling
relatively straightforwardly.”

He built agent-based models of
sepsis and used them to run in silico
drug trials based on actual clinical
studies. The agents are the immune

and blood vessel cells at the blood-to-
vessel interface. The cells change
states based on cell-to-cell interac-
tions, the presence of mediators such
as cytokines, and the influence of
drugs. When enough of the blood ves-
sel cells are injured, then the simulat-
ed person dies. 

In a paper in Critical Care Medicine
in 2004, he simulated what would hap-
pen if you treated populations of in sili-
co patients with various anti-cytokine
drugs. He showed that mortality rates

were 30 to 40 percent, no better than
standard treatment. He also tested dif-
ferent combinations of the drugs
(which some had hypothesized were
needed to override redundancies in the
immune system), as well as various
doses and durations of treatment, but
nothing worked.

“By running the computational
models, you identify that the disease
state itself is very, very stable and resist-
ant to change,” he says. “When you
simulate the intervention, you get this
sort of pebble in the stream effect
where you might see a little bit of a
result initially, but the flow of the sys-
tem is such that it basically swallows up
your intervention and it doesn’t have
any effect.”

“System-level computational mod-
els are invaluable in identifying these
types of unexpected behaviors, and will
play a critical role in addressing the
challenges of developing effective ther-
apeutic interventions,” An says.

BRINGING MODELING
AND CELL BIOLOGY

TOGETHER
Despite these recent successes in

pairing cell biology and computation-
al modeling, the two fields remain
only loosely integrated. Breaking
down these barriers will take long-
term collaborations, Zaman says. For
example, his lab comprises half exper-
imentalists and half modelers. Yet, he
says, “I still see it in many of my stu-
dents that it takes a long time before
they can speak a common language.” 

“We need a more integrated envi-
ronment, not only for the computa-
tions to be more powerful, but also for
the experiments to be more probing
and much more quantitative,” Zaman
says. “I think the burden of responsibil-
ity is on both sides.” ■■

“System-level computational models 
are invaluable in identifying these types 
of unexpected behaviors, and will play a
critical role in addressing the challenges 

of developing effective therapeutic 
interventions,” Gary An says

Sepsis Explosion. (Lower opposite page and below) These serial screenshots from a 2-D
agent-based simulation of inflammation and sepsis follow the progression from infec-
tion, to initial immune response, to cell death and the start of healing. Upon infection
with bacteria (gray areas), the healthy blood vessel cells (red) become damaged (dark
red) or die (black). Gradually, inflammatory cells (white neutrophils) gather near the bac-
teria and become activated (yellow or other colors). The inflammatory cells gradually
clear the bacteria, allowing healing to occur. Courtesy of Gary An.




